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A B S T R A C T

Manufacturing paradigms have played their important roles in modern industry. In recent 20 years, production
systems of advanced manufacturing paradigms (e.g. mass customization, reconfigurable manufacturing, sus-
tainable manufacturing and service-oriented manufacturing) have been developed to exceed the traditional
“mass production” paradigm. The reasons that make system health management especially difficult include
individual machine deteriorations, different system structures, diverse production characteristics and ex-
ponential scheduling complexity. To address these gaps, we provide a review of the prognostics and health
management (PHM) field focusing on prognostics approaches for asset health, and maintenance policies for more
“informed” decisions. This paper addresses recent advances in PHM for advanced manufacturing paradigms to
forecast health trends, avoid production breakdowns, reduce maintenance cost and achieve rapid decision-
making. Furthermore, an in-depth look at future research interests is provided.

1. Introduction

The conception of prognostics and health management (PHM) was
proposed from the Medical Science, and then be introduced into the
Mechanical Science [27,51]. Like medical prognostics focuses on the
prediction of potential diseases and the pre-treatment for patient
health, PHM in the Mechanical Science aims to provide an integrated
framework for degradation prediction and machinery maintenance.
Specially, the contents in PHM have been studied a lot by integrating
prognostics techniques and maintenance policies, such as condition
based maintenance (CBM), predictive maintenance (PM) and on-con-
dition maintenance (OM). Research focusing on accurate health pre-
dictions and efficient maintenance decisions in PHM field has been a
very important research hotspot [15,100]. Over the past several dec-
ades, reliability engineering has covered many fields of research
[13,37,96]. Yang et al. [124] reviewed condition monitoring for device
reliability in power electronic converters. Jiang, Hong and Cui [41]
introduced the advantages and disadvantages of degradation modeling,
and then summarized the related research of degradation modeling.
Our review does not cover all the articles in the prognosis and main-
tenance fields, but we do cover a broad area of latest studies for ad-
vanced manufacturing paradigms that have pushed development in
PHM forward.

As an emerging field in the Mechanical Science, PHM is gaining

interest from the industry and academia. An effective PHM framework
normally includes the health prognostics and the maintenance man-
agement. For the health prognostics, more and more professional and
hi-tech instruments (e.g. smart sensors, meters, controllers and com-
putational devices) have been applied to collect and analyze the signals
from individual machines [99,128]. Prognostics techniques, such as
vibration monitoring, oil analysis, temperature detection, acoustic
emission and ultrasonic inspection, have also been widely employed to
measure the status of a machine. Many valuable prognostics approaches
have thus been proposed to generate a rational estimation of the re-
maining useful life (RUL) or the potential degradation process [21,26].
For the maintenance management, complex systems have been
equipped and operated in advanced manufacturing paradigms, such as
mass customization, reconfigurable manufacturing, sustainable manu-
facturing and service-oriented manufacturing. System-level main-
tenance policies are facing the challenges from structural, stochastic
and economic dependencies [119,138]. Therefore, machine interac-
tions and production characteristics should be investigated and mod-
eled to identify maintenance opportunities for achieving a cost-effective
maintenance scheme.

Due to recent developments in the manufacturing paradigms, PHM
methodologies for traditional manufacturing systems need to be ex-
tended. We noticed an increasing interest in integrating PHM with
advanced manufacturing paradigms. Besides the classical dependencies
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of multi-unit manufacturing systems, new production characteristics
should be considered to extend the PHM notion from a systemic view
[10,19,30,72]. With the technique innovations, enterprises apply mass
customization, reconfigurable manufacturing, sustainable manu-
facturing and service-oriented manufacturing to maintain competi-
tiveness and meet customer needs. More targeted PHM methodologies
enable the industry to lower the possibility of unexpected breakdowns
and the cost of maintenance. Thus, novel PHM methodologies for ad-
vanced manufacturing paradigms are vital for enterprises with fore-
sight. This state of the art review provides an extensive literature
overview on this topic of recent advances in PHM. Throughout this
research, we focus on the distinctive production characteristics of each
advanced manufacturing paradigm, where the corresponding prog-
nostics approaches and maintenance policies are illustrated.

In recent years, some valuable review articles have been published
to promote the PHM applications through different perspectives
[4,108]. Shafiee and Chukova [90] published the first identifiable
academic literature review to deal with warranty and maintenance.
Wang et al. [109] reviewed and summarized the research developments
on the fault detection, diagnosis and prognostics of rotating machines in
the perspective of the spectral kurtosis technique. Keizeret al. [46]
provided an extended classification scheme focusing on various de-
pendencies of economic, structural, stochastic and added resource de-
pendence. Different from remarkable review studies above, our main
contributions include that we propose a new classification in the PHM
field in the perspective of various advanced manufacturing paradigms
(e.g. mass customization, reconfigurable manufacturing, sustainable
manufacturing and service-oriented manufacturing). Thus, we provide
the review on PHM methodologies for the corresponding order-or-
iented, reconfiguration-oriented, energy-oriented and lease-oriented
PHM mechanisms. Furthermore, we locate gaps in the literature that
require further studies to achieve an effective implementation of PHM
in practice.

This article reviews various prognostics approaches and main-
tenance policies in PHM field, and illustrates methodologies for con-
ducting PHM. The reminder of this paper is organized as follows: In
Section 2, we discuss the relationship between PHM and manufacturing
systems, and the challenge factors are introduced. Section 3 includes
the review of developed and applied prognostics approaches (physics-
based, data-driven and hybrid approaches). Accurate health prediction
of an individual asset is the cornerstone of efficient maintenance deci-
sions for manufacturing systems. Section 4 introduces the targeted
maintenance policies suitable for advanced manufacturing paradigms.
The relationships between production characteristics and maintenance
policies are explained. Section 5 concludes the current gaps in the lit-
erature. The aim of this state of the art review is to understand not only
the current practices toward PHM, but also the opportunities that exist
in PHM development for future manufacturing paradigms.

2. PHM in manufacturing systems

In order to conduct the design and deployment of a PHM frame-
work, manufacturing systems are analyzed as the monitored and
scheduled objects. In the modern manufacturing industry, a manu-
facturing system usually consists of various machines, which undergo
increasing degradation and wear with aging. In the view of the

structural dependence, the unnecessary breakdown or a maintenance
action of one machine may affect upstream/downstream machines, or
increase the potential unavailability of parallel and k-out-of-N systems.
The system performance is determined by both the performance of the
machines and their configuration within the system [28,46,52]. The
degradation of identical machines differ drastically, with deterioration
processes typically accompanied by specific physical phenomena from
sensor-driven condition monitoring technologies [32,86,142]. Thus, for
each individual machine, prognostics approaches are adopted to con-
vert monitored multivariate data to abstracted health information. RUL
distributions and the potential degradation processes are essential to
the decision-making of machinery maintenance and system manage-
ment. For the whole system, maintenance policies are much more
complex, since the interactions and dependencies among machines
should be integrated from a system-wide look. Thus, performing PHM
becomes more interesting because it is likely to benefit from dynamic
determinations of system-level maintenance opportunities.

More importantly, enterprises have been pursuing a shift to the
advanced manufacturing paradigms to ensure the competitive ability.
The advanced manufacturing paradigms mainly include: (1) Mass cus-
tomization, which has been applied to respond quickly to customer
demands. It has changed the manufacturing process from “push” pat-
tern to “pull” pattern. (2) Reconfigurable manufacturing, which has
been invented to take the advantage of reconfigurable structures to
make diverse products within limited time in a cost-effective manner.
(3) Sustainable manufacturing, which has aroused great concern on
green and sustainable technologies to avoid unnecessary energy waste
and contaminated natural environment. (4) Service-oriented manu-
facturing, which is emerging with the increasing dependence on leased
machines and systems. The service contracts offered by original
equipment manufacturers (OEMs) have predominantly focused on
maintenance and upkeep activities for machines. In summary, the no-
velty of these advanced manufacturing paradigms has been shown in
Table 1.

All the manufacturing paradigms above play their important roles in
promoting the technological innovations in industry. However, these
shifts have also brought new challenges for conducting PHM. There are
the main factors that make this problem especially difficult with the
applications of advanced manufacturing paradigms:

(1) Individual machine deterioration. Most of the existing policies are
developed based on population-specific reliability characteristics
(i.e., historical failure time distributions). Such characteristics only
consider the degradation information from the whole population
and ignore the unique information from each individual machine.
By means of conducting condition monitoring on an individual
component, it is possible to achieve prognostics for the individual.
The collected condition monitoring data contains plenty of real-
time health information for explaining the uncertainties and
thereby making decisions that are more “informed”. Besides, by
fusing different condition monitoring data, the deterioration esti-
mation of a component can be more accurate. The prognostics for
an individual component is important, since changes in any com-
ponent may affect the entire system directly. Furthermore, it is
practical to consider the deterioration of components in a system
from the view of operation and market, especially in power systems

Table 1
Characteristics of advanced manufacturing paradigms.

Paradigms Mass customization Reconfigurable manufacturing Sustainable manufacturing Service-oriented manufacturing

PHM mechanism Order-oriented Reconfiguration- oriented Energy-oriented Lease-oriented
System structure Rigid Flexible Rigid Rigid
Paradigm characteristic Variable orders Changeable structures Energy consumptions Outsourcing maintenance
Decision-making objective Cost reduction Cost reduction Energy reduction Profit increase
Maintenance opportunity Batch-changing work Reconfiguration duration Standby duration Personnel dispatch
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[64].
(2) Different system structure. Traditionally, we have to rebuild dif-

ferent system-level maintenance policies for various stationary
structures (e.g. series system, parallel system, series-parallel system,
k-out-of-N system, arbitrary structure and redundancy). Facing
changeable structures, the traditional manner not only causes the
intractable scheduling complexity, but also weakens the rapid re-
sponsiveness. The open-ended design for rapid changes in system
structure is a new issue in the perspective of PHM methodologies.

(3) Diverse production characteristics. An effective PHM methodology
should consider not only real-time deteriorations of individual
machines, but also production characteristics of manufacturing
systems. Maintenance opportunities identified in diverse produc-
tion characteristics are used to optimize maintenance scheme from
a systematic view. Dynamically utilizing production characteristics
(e.g. variable orders in mass customization, changeable structures
in reconfigurable manufacturing, energy consumptions in sustain-
able manufacturing, outsourcing maintenance in service-oriented
manufacturing) can lead to cost/energy-effective PHM solutions.

(4) Exponential scheduling complexity. Traditional opportunistic
maintenance policies calculate all possible machine combinations
and their corresponding maintenance cost-savings. Thus, the sche-
duling complexity for a J-unit manufacturing system will be at least
O(2(J−1)), which means the complexity (O) grows exponentially
with the increase of the machine number (J). In practice, dynamic
scheduling and rapid responsiveness of PHM methodologies are
essential to employ those advanced manufacturing paradigms into
the industry.

In summary, the diagram of the manufacturing path to advanced
manufacturing paradigms has been illustrated in Fig. 1. In the following
sections, prognostics approaches for accurate health prediction of in-
dividual machine, and maintenance policies suitable for advanced
manufacturing systems are reviewed and a conclusion with respect to
future PHM developments is arrived at.

3. New technical developments in health prognostics

Accurate health prognostics based on continuous state monitoring
can provide real-time maintenance schemes and avoid economic losses
led by unexpected breakdown. Prognostics is the fundamental task, it
mainly refers to predicting reliability or probability of failure of an asset
at future times and RUL [143]. Due to its importance, prognostics at-
tracts a lot of researchers’ attention. Some review literatures on prog-
nostics approaches have appeared from different perspectives
[39,45,51,54,92,93,98,112,135]. Roughly, prognostics approaches can
be categorized into physics-based approaches, data-driven approaches
and hybrid approaches.

Physics-based approaches are referred to model-based approaches
that assume the behavior of a damage development of a component can
be physically modeled, and the model parameters could be obtained
based on measured data. Data-driven approaches rely on the informa-
tion from previously observed or collected data to map the character-
istics of damage/degradation state to predict future trend. Hybrid ap-
proaches integrate the advantages of different approaches.

3.1. Physics-based approaches

Physics-based approaches utilize mathematical models to describe
the physical models or degradation models of a machinery component.
These models are constructed and configured based on first principles,
domain experience, failure mechanism, and a series of requisite as-
sumption. Physics-based approaches include but not limited to the
following methods: physical models, structural analysis, contact ana-
lysis, cumulative damage model, cycle fatigue, crack growth model,
spalling growth estimation model and so on [2,18]. These methods
could reflect the degradation process directly by the application of
mathematical models according to the specific type or failure mode of
the component. The precision of the substitution mathematical models
is crucial to the prognostic accuracy. In addition, certain parameters of
the models are determined initially based on the domain experience or
updated continually according to real-time condition of the machinery
to enhance prognostic accuracy.

Various physics-based approaches are presented for numerous types

Fig. 1. Manufacturing path to advanced manufacturing paradigms.
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of machinery component in recent research [67]. Some literatures focus
on the failure modes of the complex machinery system to improve the
prognostic capability. For the hidden failure mode, Luo et al. [61]
presented an interacting multiple model (IMM) to track the un-
detectable failure. For the complex and multi-failure modes, Thumati
and Jagannathan [102] proposed online approximator in discrete time.
Its application scope was expanded to the complex machinery system.
More publications using physics-based approaches for prognostics are
referred to Table 2.

The advantages and disadvantages of physics-based approaches are
also shown in Table 2. Obviously, the main drawbacks of the physics-
based approaches can be summarized as follows:

• The construction of the substitution mathematical models depends
on the domain experience excessively, such as the thorough
awareness of the component structure, the exhaustive exploration of
the degradation process and so on. Thus, human error could make
an extreme influence on the accuracy of the model.

• The correlation among the variables is obscure to model in a sta-
tistical relation. Moreover, discrete and nonlinear relations lead the
model optimization more difficult.

• The parameters of the models, especially the influential factor of the
component degradation like workload, as well as the external fac-
tors like the production environment, are difficult to estimate or
measure. In most condition, artificial assumptions are required.

• The component specialty of the substitution mathematical models
limits their application scope of failure prognostic, or even forces
their application into failure detection [103].

3.2. Data-driven approaches

Data-driven prognostics approaches deduce asset degradation/state
behavior directly from monitoring data. It is not necessary to under-
stand the mechanics and propagation of a damage. Some studies clas-
sified these approaches into artificial intelligence approaches and sta-
tistical approaches [7,55]. Meanwhile, other studies classified the
prognostics approaches into machine learning and statistical ap-
proaches [39]. The advantages and disadvantages of these approaches
are listed in Table 3.

3.2.1. Machine learning approaches

• Artificial neural network (ANN) methods

ANN is one class of the most representative data-driven methods
that use training samples to obtain desired outputs, such as degradation
trend, residual lifetime and so on. There are many different categories
of the ANNs, for example, back propagation neural network (BPNN),
recurrent neural network (RNN), fuzzy neural network (FNN) and ex-
treme learning machine (ELM), etc. A typical ANN is composed of an
input layer, hidden layer(s) and an output layer. ANN has strong ability
for nonlinear simulation, strong robustness and self-study ability. Due
to these merits, ANNs are widely used in fault diagnosis and prognosis

[105,139]. Pan et al. [76] realized the real-time prediction of machine
health condition via online dynamic FNNs. Mazidi et al. [62] utilized an
ANN to detect anomalies in the performance of the wind turbine. Xiao
et al. [121] proposed a degradation prediction approach based on
BPNN to solve the problem without failure or suspension histories as
training samples.

Even though there are many merits about ANNs, some issues should
not be ignored due to the nature of the algorithms themselves. First,
there is no theoretical standard to determine the structure of networks,
for example the number of hidden layers and the associated number of
neurons. Moreover, most networks require sufficient amount of data for
training and the training process is time-consuming. Furthermore, the
precision of prognosis depends on the training samples. It is worth
noting that the results from the well trained networks may be different
even though the training samples are same. In addition, the prognostics
results cannot support the confidence limit.

• Support vector machine (SVM) methods

SVM is one of the most popular algorithms on classification and
regression analysis. It is a supervised learning method. The basic mo-
tivation of SVM is to find out an optimized separation hyperplane, so
that the distance from it to the nearest data point on each side is
maximized. The high performance of SVM on non-linear classification is
due to its kernel trick that implicitly maps inputs into high-dimensional
feature spaces. Compared with ANNs, SVM can avoid over fitting ef-
fectively and the training process is faster. SVM performs efficiently for
large dataset and real-time analysis. Besides, the kernel trick of SVM
can be determined based on expert knowledge. Furthermore, SVM is
defined by convex optimization.

Due to the advantages, SVM is widely used on prognostics. Widodo
and Yang [111] developed machine health prognostics models using
survival probability and SVM. Lu et al. [60] focused on the estimation
of degradation trend of a slewing bearing with small sample data based
on proposed least squares SVM. Khelif et al. [47] used support vector
regression to estimate the RUL of an equipment directly from sensor
values without the necessity of estimating degradation states or a
failure threshold.

Even though SVM is widely used on prognostics due to its good
generalization capacity, the main concern about SVM is that there is no
theoretical guidance to determine the kernel function/trick in SVM.
Besides, the method is also without consideration of confidence limit.

• Bayesian methods

Bayesian inference utilizes the probability to represent all forms of
uncertainty. A Bayesian network is a probabilistic acyclic graphical
model that represents a set of random variables and their probabilistic
interdependencies [93]. The kernel theory of Bayesian methods is
conditional probability. Hence, the prior knowledge or root causes of a
failure must be known. Bayesian methods provide confidence limits,
intrinsically. These methods capture and integrate expert knowledge.
Meanwhile, the relationships among events or failures are considered.

Table 2
Advantages and disadvantages of physics-based approaches.

Category Method Advantage Disadvantages Reference

Physics-based approaches Single degree of freedom model Reflect the degradation process of bearing
accurately

Require training test to determinate unknown
parameter

[67]

Interval observers and ellipsoid
algorithms

Consider the slow behavior of degradations Model specificity [83,130]

Dynamic model with a virtual defect Introduce a virtual defect to present its
development

Difficult to build accurate and proper virtual
defect

[17,73]

Interacting multiple model Track the undetectable failure Non-universal to different functioning modes [61,81]
Online approximator Achieve failure isolation Need practice verification [102,133]
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For the methods themselves, over fitting is effectively avoided, while
multivariate and dynamic processes are modeled. Moreover, the in-
completeness of data sets can be managed.

Bayesian methods include many configurations and architectures
that are widely used in prognosis, for example, discrete Bayesian,
Bayesian belief networks (BBN), Particle filter [44], Kalman filter [94]
and so on. Bayesian methods consider the uncertainty when estimating
degradation state or RUL based on prior knowledge/data or root causes.
Jin et al. [42] studied the degradation assessment and residual life
prediction of secondary batteries in spacecraft using a two-phase
method. Mosallam et al. [69] proposed a two-phase prognostic method
for direct RUL prediction.

For Bayesian methods, if the prior knowledge/data or root causes
are unknown, these methods cannot be modeled convincingly. In ad-
dition, the prognostics results are very sensitive to the prior distribu-
tion. Bayesian methods require a number of training samples or mea-
surement data. Another concern of Bayesian methods is the intensive
computation caused by variants for non-linear systems.

• Markov models

Markov models assume that a system or component should be in a
single state among a finite number of states. The component transits
from one state to another with associated probability. For a basic
Markov chain, the sum of probabilities of leaving one state and entering
into the different states must be equal to one. For semi-Markov models,
they do not require that the time spent in a particular state obeys ex-
ponential distribution, but rather can obey arbitrary distribution [93].
Thus, the sum of probabilities of leaving one state and entering dif-
ferent states can be less than one [53]. Hidden Markov chain is an
extension of Markov chain where not all states are directly observable
and thus respective transition probabilities are indirectly assignable
[97,132]. Hidden semi-Markov models revise the assumption that the
failure rate is inconstant, thus hidden semi-Markov chains are more
suitable for prognostics. Mazidi et al. [66] used Markov models to ad-
dress the uncertainty in the nature of the operation and component
degradation for wind turbines. Liu et al. [59] presented an integrated
framework for multi-sensor equipment diagnosis and prognosis based
on adaptive hidden semi-Markov model (AHSMM).

The advantages and disadvantages of Markov models are similar
with the ones of Bayesian methods. Markov models can deal with the
incomplete and multivariate data, and provide accurate prognostics
results if the root causes of a failure are known. Besides, Markov
methods consider the states of a machine and the transit among the
states. Markov methods need a large volume of reasonable data for
training. In addition, some assumptions of Markov methods, for ex-
ample single monotonic, non-temporal failure degradation pattern, and
the distribution of failure progression time, make the Markov models
unsuitable in many cases.

3.2.2. Statistical approaches
Statistical data-driven approaches estimate RUL or degradation by

using event data or monitoring data. Event data means the recorded
failure event or suspension data. However, some critical assets are not
allowed to run to failure, thus event data may be scarce. Monitoring
data is more informational and practical for prognostics. The typical
statistical approaches, such as some trend evaluation methods,
Gaussian processes and Wiener processes, can be divided into regressive
methods and proportional hazards models.

• Regressive methods

Autoregressive moving average (ARMA) is a typical regressive
model that is composed of two parts: an autoregressive (AR) part and a
moving average (MA) part. It is widely applied to time series data. The
advantages of ARMA are that historical failure data and failure

mechanism are not required. However, one disadvantage is that the
algorithm performs badly for long-term prediction. Thus, Pham et al.
[79] presented a hybrid improvement of nonlinear autoregressive with
exogenous input (NARX) model and ARMA model for long-term ma-
chine state forecasting. In addition, this algorithm has the linear as-
sumption, its application is thus limited if the non-monotone degrada-
tion trace is extracted. Furthermore, the confidence limit is not
considered.

Gamma processes have the monotonic property and are usually used
to describe the deterioration of a component with a sequence of positive
increments over time [77,89]. Shafiee and Finkelstein [88] developed a
proactive group maintenance policy, where the propagation of damage
was formulated by Gamma process. Son et al. [95] modeled a non-
homogeneous Gamma process for estimating RUL with considering a
noisy observed degradation data and by using the Gibbs sampling
technique. Gamma processes are adequate for monotonic processes, for
example damage size and other measurements (crack growth, total
metal concentrations). Nevertheless, in practical applications, not all
the degradation processes are monotonic processes. Hence, Gamma
processes are restricted for modeling degradation.

Wiener processes are the extension of standard Brownian motion. A
Wiener process predicts failure upon the first passage time (FPT) of the
degradation model exceeding a predetermined threshold. The dis-
tribution of FPT can be well explained and analyzed as inverse Gaussian
distribution. A Wiener process can be regarded as random motion of
particles in fluids and air. Therefore, Wiener processes have mathe-
matical advantages to describe non-monotone deterioration trace.
Huang et al. [35] proposed an adaptive skew-Wiener model for RUL
prediction, which is much more flexible than traditional stochastic
process models. However, there are also some limitations about Wiener
processes. A Wiener process is a time homogeneous process, while not
all degradation processes have this property. In addition, Wiener pro-
cesses only employ the information contained in the current degrada-
tion, rather than the information of entire sequence of observations.

• Proportional hazards model

Proportional hazards model is one of the most frequently applied
models for prognostics. It formulates a component degradation as the
product of a baseline hazard rate and a positive function that reflects
the effect of operating condition on the baseline hazard. Proportional
hazards model implies two important assumptions. One assumption is
that “times to failure” are independent and identically distributed. The
other assumption is that the covariates affecting the life of an item do
not influence the “times to failure” of any other items. You et al. [129]
divided an equipment lifecycle into a stable zone and a degradation
zone, and developed a two-zone proportional hazard model to predict
equipment RUL. Tian and Liao [104] proposed a multi-component
system condition-based maintenance policy based on proportional ha-
zards model. Zhang et al. [136] proposed a mixture Weibull propor-
tional hazard model (MWPHM) to predict the failure of a mechanical
system with multiple failure modes using lifetime and monitoring data.

Due to the assumptions above, proportional hazards model is not
always practical in some cases. In some situations, the failure histories
or associated covariate data are not occurred. The failure modes have
interactions among components and covariates that cannot be mea-
sured. Moreover, sometimes the parameter selection of the models is
time consuming.

3.3. Hybrid prognostics approaches

Hybrid prognostics approaches integrate the merits of different
methods and make the prognostics more accurate. The hybrid prog-
nostics approaches can be mainly categorized into two classes: (1)
Physics-based approaches combined with data-driven approaches, and
(2) data-driven approaches combined with other data-driven
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approaches. The advantages of these two types of approaches are shown
in Table 4.

• Physics-based approaches combined with data-driven approaches

The hybrid approaches of physics-based approaches combined with
data-driven approaches mainly include two types. One type is that the
prognostics results from physics-based approaches and data-driven
approaches are fused together. The other type is that the data-driven
approaches are used to estimate the current/future health state/index,
then physics-based approaches are used to predict degradation or RUL.

For the first type, Qian et al. [82] revised phase space warping
(PSW) by enhanced multi-dimensional auto-regression model to de-
scribe defect tracking on a fast-time scale. Paris crack growth model
was modified by a time-piecewise algorithm to characterize the defect
propagation on a slow-time scale. For the second type, Zhang et al.
[134] developed a novel hybrid approaches in which data-driven
method was used to “calibrate” the physics-of-failure model. Mean-
while, the physics-of-failure model was used to define failure criteria
and thresholds for data-driven method, and RUL prediction was based
on data-driven results.

• Data-driven approaches combined with data-driven approaches

Similar with above hybrid approaches, this type of hybrid ap-
proaches can also be categorized into two types. One type fuses the
results from different data-driven methods into a final prognostic result
[16]. The other type uses one data-driven method to estimate current/
future health state/index, and then utilizes another data-driven ap-
proach to predict degradation or RUL [22,122,140].

For the first type, Gebraeel et al. [25] mapped the relationship be-
tween vibration signals and the bearing operating time by using BPNNs.
RUL prediction was accomplished by weighting the outputs of all the
neural networks. Mazidi et al. [63] proposed a hybrid approach based
on ANNs and a proportional hazards model. A combination of the
models’ outcomes can offer the possibility to evaluate asset manage-
ment policies. For the second type, Tran et al. [106] proposed a three-
stage RUL prediction approaches by integrating ARMA, proportional
hazard model and SVM. Wang et al. [110] used Wiener process to
model system degradation, then Kalman filter was used for RUL esti-
mation. Mazidi et al. [65] proposed a hybrid health condition model
where ANNs were created to simulate normal behavior and then the
signal was applied through a proportional hazards model to create the
health condition function. Baptista et al. [9] presented the RUL esti-
mation method in aeronautics by combining data-driven and Kalman
filtering.

Developing hybrid approaches has two main advantages. One ad-
vantage is that the hybrid approaches can capture both failure me-
chanism/failure mode/defect propagation and merits of algorithms.
The other advantage of the hybrid approaches is that these hybrid ap-
proaches can avoid the weakness of different methods/algorithms.

4. New methodological developments in maintenance policies

Nowadays, with the applications of advanced manufacturing para-
digms, there has been a growing interest in the new developments of
maintenance policies. By pulling the real-time results of health prog-
nostics, decision-makers should investigate and model the different
system structures, the diverse production characteristics and the ex-
ponential scheduling complexity. Due to the difficulty in dealing with
these issues, maintenance policies for advanced manufacturing para-
digms developed slowly in the early years. With the actual demands in
the industry, new PHM scheduling has gaining more and more popu-
larity.
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4.1. Mass customization

In today's competitive market, mass customization is widely applied
to deliver products and services that respond quickly to customer de-
mands and best meet individual needs with near mass production ef-
ficiency [24]. As a manufacturing paradigm focusing on the broad
provision of personalized products/services, mass customization has
changed the manufacturing from “push” mode to “pull” mode [34]. In
mass customization, batch orders with variable lot sizes are processed,
and it is important to provide individually designed batches through
process agility, flexibility and integration. Major companies like Gen-
eral Motors, Ford, Chrysler, Toyota and others have been implementing
this paradigm in their manufacturing lines. Different from the tradi-
tional flow-line production, mass customization has the following
production characteristics. First, according to the different require-
ments of every customer, batch orders are independent with variable lot
sizes. Second, these sequential batches processed in a system are nor-
mally ordered only a short time beforehand. Third, for handling the
sequential batches cycle by cycle, a set-up work happens when one
batch switches to another. Fourth, facing the new trends of customer
demand volatility, frequent market shifts and increased quality re-
quirements, each batch production prefers no interruptions during the
current cycle.

It is worth noting that mass customization has changed the pro-
duction from “made-to-stock” to “made-to-order” [125]. This requires
the conventional system-level maintenance policies to be improved for
the “high-variety-low-volume” production. Recent advances in predic-
tion methods allow for processing massive data into real-time in-
formation for explaining the uncertainties and thereby making deci-
sions that are more “informed”. Due to the complexity of jointly
scheduling for maintenance actions and production orders, studies of
this problem at system level are urgently required [14,20,107,120].
However, according to mass customization characteristics, there remain
some issues need to be addressed. First, most of existing production &
maintenance policies suffer from the intractability when the number of
machines grows. Second, classical maintenance-driven policies have
not extensionally analyzed the consequences of advancing or post-
poning PM activities in mass customization. Third, real-time and cost-
effective scheduling at system level is required in industrial companies
that makes various products in large and discrete batches, when the
demands and production processes are stochastic.

Therefore, other than classical maintenance policies, novel main-
tenance policies are required to eliminate unnecessary production
stops, achieve significant cost reduction and overcome complexity of
system-level scheduling in mass customization [5,71]. Jin and Ni [43]
tried to make joint decisions on the preventive maintenance level and
production quantity for manufacturing systems. Maintenance decisions
were integrated with production decisions to accommodate the demand
uncertainty. Fitouhi and Nourelfath [23] developed an integrated lot-
sizing and preventive maintenance strategy to minimize the sum of
preventive and corrective maintenance costs, setup costs, holding costs,
backorder costs and production costs. It also satisfied the demand for all
products over the entire horizon. Xia et al. [113] proposed a bi-level
maintenance policy for mass customization with degrading machines.
The maintenance scheduling considered not only individual machine
deteriorations, but also the batch production with variable lot size. Yu
et al. [131] emphasized that the development of mass customized
products demands various activities, such as design, manufacturing
process planning, manufacturing resource planning and maintenance
process planning, to be considered and coordinated. Liu and Yao [57]
further introduced Mobike, a bike-sharing service provider in China,
integrated maintenance support into its platform to fulfill multi-
dimensional customer requirements. In sum, in the system-level main-
tenance policies for mass customization, the key issue that how to react
rapidly to practical changes and updates of batch orders needs to be
further studied, especially in the global competitive market.

4.2. Reconfigurable manufacturing

Facing increasingly unpredictable market changes, reconfiguration
concept has been widely studied to handle rapid product upgrades and
variable product demands [48]. To stay competitive with market fluc-
tuations, reconfigurable manufacturing systems (RMS) have been de-
veloped with their new characters. A RMS is designed with the ability of
dynamic adjustments of the manufacturing functionality, and open-
ended reconfigurations of the system structure and its machines [3]. In
traditional mass production, a system structure will rarely be adjusted
after the original system design. In reconfigurable manufacturing,
manufacturing systems should be designed to offer high-quality pro-
ducts, and respond rapidly to consumer needs. By combining the high
throughput of a dedicated manufacturing line (DML) with the flexibility
of a flexible manufacturing systems (FMS), a RMS can respond to
variable product demands by adapting its reconfigurable structures and
related machines in a limited time [11]. The RMS techniques constitute
a novel type of systems characterized by the adjustable structure, and
thus help to achieve future manufacturing system's flexibility and re-
sponsiveness [29].

However, the production characteristics of a RMS with its re-
configurable structures also bring the challenges in the system-level
maintenance scheduling. It is essential for operating a RMS and its
machines healthily for reconfigurable manufacturing. It is worth noting
that changing needs of capacity and functionality not only cause diverse
reconfigurations of a RMS, but also separate the production process into
sequential manufacturing stages with corresponding system structures.
In practice, the economic, stochastic and structural dependences of
different types of systems have led to the scheduling complexity. Even
those maintenance policies in term of various fixed structures are of
huge value and high difficulty, no matter the policies for reconfigurable
structures. Most existing system-level maintenance strategies were de-
veloped in term of different system structures like series, parallel,
series-parallel and k-out-of-N systems [6,85,118]. It can be seen that
most previous studies are devoted to the fixed structure problem, and
thus cannot be suitable for the reconfigurable structure problem.

For proposing an effective maintenance policy for reconfigurable
manufacturing, the core production characteristics of a RMS should be
considered. Meanwhile, the rapid responsiveness provides a key ad-
vantage for a RMS by adjusting production capacity when the market
grows, and adding functionality when the product changes [74]. The
key issue is that separated manufacturing stages caused by diverse re-
configurations have their own system structures, which are designed for
current production requirements. If the system-level maintenance
policy has to be rebuilt with sequential reconfigurations for those dif-
ferent structures, the RMS responsiveness and flexibility will be wea-
kened. Therefore, some groundbreaking maintenance studies for re-
configurable manufacturing have been published by comprehensively
investigating RMS characteristics and maintenance opportunities. Zhou
et al. [141] incorporated reconfiguration into PM actions for improved
system performance. The expected total cost of implementing the in-
tegrated reconfiguration and age-based maintenance (IRABM) policy
was minimized. Renna [84] utilized a simulation environment to test
how the level of flexibility and preventive maintenance policy affect the
performance of RMSs that are designed with customized flexibility. Xia
et al. [114] considered the operation process rebuilding (OPR) of op-
eration systems and an opportunistic maintenance (OM) policy was
proposed according to OPR activities. Xia et al. [117] developed a re-
configurable maintenance time window (RMTW) strategy for those
reconfigurable structures of a RMS. Koren et al. [49] emphasized that
the agility and speed of maintenance may play a significant role in the
system design for next generation manufacturing with six RMS char-
acteristics. In sum, the system-level maintenance policies for re-
configurable manufacturing should be designed to efficiently adapt to
system reconfigurations, decrease scheduling complexity, avoid un-
necessary breakdowns and optimize maintenance cost.
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4.3. Sustainable manufacturing

With increasing concerns on the human ecology, the industry's re-
sponsibility to apply sustainable manufacturing has been required.
Sustainable manufacturing means that the increasing demands have
resulted in greater efforts toward energy consumption control to satisfy
government legislations for green manufacturing and future needs for
sustainable globalization. In fact, nowadays the industry has occupied
more than 37% of the global total energy. Meanwhile, industrial ac-
tivities have caused about 19% of the greenhouse gas emissions, where
manufacturing processes play an important role [1]. Therefore, in-
novating sustainability has become a new standard, while manu-
facturing systems have shifted from focusing solely on cost reduction to
balancing cost, energy, and other social objectives.

In recent years, energy consumption control has become the re-
search hotspot in industry and academy. It is worth noting that un-
necessary energy wastes lead to more carbon emissions, higher pro-
duction costs and contaminated natural environment. This requires the
manufacturers to take the responsibility for applying new green/sus-
tainable technologies to reduce industrial emissions to the atmosphere
[40]. Facing the challenges of balancing cost priorities against sus-
tainable responsibilities, decision makers should handle the changes in
economic, environmental and social factors, which are all important for
sustainable manufacturing. That is, the energy-efficient health man-
agement will be urgently required to avoid environmental taxes and
penalties [31]. A PHM methodology needs to be developed to com-
prehensively consider machine deteriorations, production character-
istics and energy interactivities.

On the one hand, sustainability indicators are required in the
maintenance decision-making to better control and maintain the ma-
chines/systems to be consistent with sustainable requirements.
Developed based on the energy consumption and the useful output,
energy efficiency indicator (EEI) can be considered as a main perfor-
mance for sustainable performance, which should be compliant with
“sustainable manufacturing” orientation defended in industry. At ma-
chine level, EEI approaches associated with machines are often eval-
uated based on the behavior of several features, like voltages, tem-
perature and harmonics [58]. At system level, systemic EEI approaches
consider not only the machines’ behaviors and their interactions, but
also the behaviors of the whole system regarding to the performance to
be served [33]. The latter approaches are usually directly integrated
with the maintenance decision-making.

On the other hand, there have been many valuable ways to reduce
energy consumption for sustainable manufacturing. First, the design
phase has been researched to improve the machine and upgrade the
structure. Mori et al. [68] proposed a new acceleration control method
to reduce energy consumption by synchronizing spindle acceleration
with the feed system. Second, some studies focused on optimizing the
manufacturing process parameters to reduce energy consumption. Oda
et al. [75] reported their findings on cutting condition improvement for
5-axis machine tools, specifically addressing tool angles and cutting
speed in an effort to reduce energy consumption. Third, the production
optimization has been viewed as the most fast-speed and cost-effective
way to achieve energy reduction in manufacturing systems. Shui et al.
[91] presented a mathematical model to estimate both production
frontier and energy demand frontier, and evaluated the energy effi-
ciency in the automotive manufacturing sector using plant-level pro-
duction and utility consumption data. Fourth, the maintenance issues
have been studied to optimize maintenance schemes for reducing en-
ergy consumption [123]. Lindström et al. [56] addressed intelligent and
sustainable production in the sense of combining and integrating online
predictive maintenance and continuous quality control. Kumar et al.
[50] developed a big data driven sustainable manufacturing framework
for condition-based maintenance prediction. The big dataset was gen-
erated from a sophisticated simulator of a gas turbine propulsion plant.
Zhang et al. [137] studied an overall architecture of big data-based

analytics for product lifecycle (BDA-PL) by focusing on cleaner manu-
facturing and maintenance processes of complex products. Xia et al.
[115] proposed an energy saving window (ESW) policy to reduce the
energy consumption of a whole production line. Energy consumption
interactivities, batch production characteristics, and system-layer
maintenance opportunities were comprehensively integrated. In sum, it
should be noticed that a lot of energy is used in the background pro-
cesses, including maintenance activities and machine startups. Thus, an
energy-oriented maintenance policy could be proposed by enabling
technologies both at machine level and at system level. Besides,
maintenance and startup issues could be integrated in sustainable
manufacturing.

4.4. Service-oriented manufacturing

With the intense market competition, many manufacturing compa-
nies have been increasingly relied on leased equipment and machinery.
Increasing economic stress, equipment technical complexity and ma-
chine availability/criticality have made equipment leasing a good op-
tion [70]. Meanwhile, leading OEMs, such as GE and Pratt &Whitney,
have their customer facilities (lessees), who lease physical assets and
require maintenance service all over the world. Therefore, outsourcing
maintenance has been a growing paradigm shift in many industries due
to several advantages. Firstly, lessees who lease and utilize high-tech-
nology equipment can avoid high purchase investment. Secondly,
OEMs who designed and manufactured the machines are arguably the
best source for maintaining these assets over the lifecycles. Thirdly,
diversified choices of those leased machines can promote the achieve-
ment of flexible manufacturing according to customer demands and
preferences. Fourthly, extra costs of in-house maintenance department
(crew salary, staff training and sensor procurement, etc.) can be sig-
nificantly reduced.

In this situation, many OEMs are turning to product-service
packages where they deliver (typically lease) the physical assets, and
offer an integrated service contract for the asset. However, there is still
a great challenge for OEM to manage the big data of machine statuses
due to the lack of professional asset knowledge and smart prognostic
tools [78]. Leased systems have been widely used in mining plants,
processing plants, manufacturing plants and power plants. In 2011, U.S.
equipment leasing permeability (leasing equipment investment/ total
equipment investment) has reached 21%. Performing outsourcing
maintenance requires cost, and it is a significant part of the operating
budget of customer facilities (lessees). For developing an industrial
Internet of Things (IoT) framework for maintenance and operations
management, we need to notice that manufacturing facilities are
equipped with different machines that undergo complex degrading
processes. These degradations will finally cause machine failures and
interrupt facility operations. Most OEMs schedule maintenance actions
to improve the states of leased machines and thus reduce unnecessary
failures and corresponding penalties [126]. Thus, OEMs have been re-
quired to extend the machine lifetime, minimize the crew dispatches
and reduce the maintenance costs in useful ways [107].

In the maintenance literatures for service-oriented manufacturing,
most of the studies focus on maintenance decision-making for a single
leased machine [38,87]. Pongpech and Murthy [80] developed a peri-
odic PM policy that achieves a tradeoff between maintenance costs and
lease penalties. Yeh et al. [127] investigated several important optimal
preventive-maintenance policies for leased equipment. PM actions were
performed sequentially with a fixed maintenance degree. Chang and Lo
[12] integrated the influence of lease period length into a maintenance
model by considering the machine's residual value. Hung et al. [36]
took the penalty of changing market environment into account for the
expected total cost model of preventive maintenance to obtain an op-
timization strategy for leased equipment. In all, these works play a great
role in maintenance scheduling for service-oriented manufacturing.
However, one of the unique aspects in manufacturing settings is that
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recent leased system is often not a single machine, but instead a multi-
unit manufacturing system. Teixeira et al. [101] described a research
project to investigate how PHM could support effective fulfilment for
product-service systems (PSS) contracts. Askri et al. [8] developed a
correlated group preventive maintenance policy correlated to produc-
tion for parallel leased machines by using the gravity center approach
(GCA). Xia et al. [116] proposed a leasing profit optimization (LPO)
maintenance policy to schedule Early PM optimizations for the series
system by utilizing maintenance opportunity. In sum, system structure
interactivities, group maintenance opportunities and leasing service
contracts could be integrated to achieve the profit maximization and
the dispatching reduction for service-oriented manufacturing.

5. Conclusions and directions for further researches

This overview aims at providing a comprehensive review on the
recent advances in the PHM field in the perspective of various manu-
facturing paradigms. Advanced manufacturing paradigms rise with the
global competition and technique innovations to maintain enterprise
competitiveness and meet customer needs. This trend delivers an urgent
requirement of more targeted PHM methodologies, from both theore-
tical and practical points of views. This review focuses on two aspects,
these being prognostics approaches and maintenance policies. The
power of mathematics and statistics has been used to develop different
kinds of prognostics approaches and various maintenance policies. The
challenges and gaps in PHM methodologies for advanced manu-
facturing paradigms have been summarized in Table 5.

For the health prognostics, prognostics approaches with their merits
and disadvantages are analyzed in this review: (1) physics-based ap-
proaches achieve prognostics by using mathematical models to describe
the degradation mechanics or damage propagation. (2) Data-driven
approaches use the collected data (usually condition monitoring data)
to map the characteristics of damage/degradation state to achieve
prognostics. (3) Hybrid approaches combine the advantages of different
approaches to improve the prediction accuracy or extend prognostics
model applications.

For the maintenance management, the relationship between pro-
duction characteristics and policy designs are studied: (1) Mass custo-
mization policies integrate production and maintenance, thus rapidly
react to market changes and updates of batch orders. (2) Reconfigurable
manufacturing policies can adapt to system reconfigurations, avoid
RMS breakdowns and reduce maintenance cost. (3) Sustainable man-
ufacturing policies are designed to control and maintain systems in an
energy-efficient way. (4) Service-oriented manufacturing policies in-
tegrate maintenance opportunities and lease contracts to achieve the
profit maximization and the dispatching reduction.

The following are the thoughts based on the above review,

regarding the future research topics or directions. These thoughts are
not exhaustive, but may shed some light for those interested in PHM
research and applications.

First, prognostics techniques in previous literature still have some
weaknesses that limit their practical values in PHM applications, and
lead to the situation that many researches are still resting at the theo-
retical phase:

• For data acquisition, most existing prognostics methods need a large
quantity of historic data for model training. Not only normal state
data, but also failure or even fatal data is required. This makes data
collection a high-cost and difficult task.

• For method establishment, many prognostics methods are updated
only by real-time input data, other than the models themselves.
There requires a fast-speed method that can achieve online updating
of the prognostics model.

• For industrial application, each prognostics method is usually de-
signed for a specific domain and lacks generality. There lacks a
general prognostics method to promote PHM practical applications.

• For accuracy detection, a consistent way to compare and evaluate
different prognostics methods is lacking. There requires a criterion
to judge the accuracy and precision for various prognostics methods.

Therefore, future topics on prognostics techniques to effectively
measure and forecast machine degradation and RUL may include that
holistic methods, other than domain specific models, should be pro-
posed to adapt to the fast equipment upgrading. Another direction is
that the error between real RUL and predicted RUL should be fed back
to reestablish the prognostics method. Seamless integration of de-
gradation prediction and machinery maintenance is also a research
direction that needs further exploration. Accurate forecasting for ma-
chine health prognosis is essentially required to achieve more effective
maintenance schedules.

Second, designing maintenance policies for advanced manu-
facturing paradigms is still a new research field in PHM. Few of them
have been used in practical applications successfully. The required
extensions include:

• For mass customization, most joint scheduling policies of main-
tenance and production handle sequential batch/job orders with
pre-determined lot sizes. It is still a difficult task to model the un-
certainty of customer demand volatility.

• For reconfigurable manufacturing, the complexity of many oppor-
tunistic maintenance policies grows exponentially with the machine
number gaining. Reconfigurable structures bring more challenges
than fixed system structures.

• For sustainable manufacturing, the linking of maintenance with

Table 5
Summary of challenges and gaps in the PHM field.

Area Sub-area Gap Challenge

Health prognostics (Machine
level)

Physics-based approaches Excessive dependence of specific domain experience and
modeling techniques, and lack of universality

Accuracy increase of modeling and parameter
estimation, and consideration of external factors

Data-driven approaches Need of a large quantity of historic data for data training,
including state data, and failure or even fatal data

Real-time prediction and balance of prognosis
accuracy, data volume and calculation time

Hybrid approaches Selection of various prognostics methods to improve the
accuracy and precision for more effective maintenance
schedules

Consistent way to compare, evaluate and integrate
different prognostics methods

Maintenance management
(System level)

Mass customization Trends of customer demand volatility, frequent market
shifts and increased quality requirements

Joint scheduling of cost-effective maintenance
actions and variable batch orders

Reconfigurable
manufacturing

Ability of dynamic adjustments of reconfigurable structure
and open-ended system reconfigurations

Efficient adaption to various system reconfigurations
and responsiveness of model reconstructions

Sustainable manufacturing Demand of reducing energy consumption other than
focusing solely on maintenance cost reduction

Energy-efficient integration of system maintenance
opportunities and energy interactivities

Service-oriented
manufacturing

Rise of outsourcing maintenance where OEMs are required
to provide maintenance service in time

Comprehensive consideration of group maintenance,
leasing contracts and profit maximization
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energy consumption control under a system view is a potential
topic. A consistent criterion of the measurement for energy reduc-
tion and energy interactivities is lacking.

• For service-oriented manufacturing, most of the studies focus on
maintenance decision-making for a single leased machine. However,
current outsourcing maintenance has to serve multi-unit leased
systems, even multiple systems all around the world.

Therefore, future research directions on maintenance policies for
manufacturing paradigms include in-depth analysis of production
characteristics and integration of multi-level decision-makings. At ma-
chine level, the linking of unique information from each individual
machine with maintenance scheme for the whole system is a topic that
needs further exploration. At system level, open-ended maintenance
optimizations for rapid changes in system structure needs to be further
explored to push a theoretical concept into commercial uses. The above
two topics are for the problems of single-location maintenance planning
with opportunistic maintenance policies. Now facing global business,
there are still some problems needed to be studied for multi-location
maintenance optimization, integrating spare part inventory, logistics
path planning and human resource scheduling.

Beyond that, advanced manufacturing paradigms are still devel-
oping with the rapid upgrading and innovation of manufacturing, in-
formation, and management technologies. This transformation provides
motivation for improving maintenance policies. The connections of
PHM methodologies with new manufacturing paradigms will be the
research directions for future exploration.

• For networked manufacturing, during the entering the global
market, manufacturers adopt the spatial expanding model that
builds multiple local clusters of supply chain and forms a global
manufacturing network. The key challenge is how to integrate dif-
ferent maintenance resources into regional/global production sys-
tems involving many locations.

• For additive manufacturing, further study of this technology is ne-
cessary in the view of spare parts supply for real-time maintenance
scheduling. The research direction can be how to evaluate the po-
tential impact of additive manufacturing improvements on the
configuration of spare parts supply chains.

• For cloud manufacturing, the developed maintenance policy should
be combined with cloud computing with a manufacturing perspec-
tive. The key challenge can be summarized as the capability of
providing distributed, fast-responding, on-demand and quantifiable
maintenance services.

• For social manufacturing, maintenance scheduling has to be suitable
for the new paradigm. It promotes socialized resources configura-
tion, social interaction, business collaboration and all-around pro-
duction management to accomplish product lifecycle tasks effi-
ciently and flexibly.

It is seen that PHM methodologies for advanced manufacturing
paradigms has a positive cascading effect in upgrading future industries
and increasing their competitiveness. They would be systematic meth-
odologies consisting of recent advances in prognostics techniques and
maintenance policies. The successful PHM applications in the industry
require the contributions from not only the field of reliability en-
gineering, but also the field of manufacturing engineering. It could be
anticipated that more PHM methodologies for advanced manufacturing
paradigms will appear, and this overview can serve as a reference point
for future studies.
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